Functional involvement of a deoxy-D-xylulose 5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis.

نویسندگان

  • B Miller
  • T Heuser
  • W Zimmer
چکیده

The present work aimed to proof the functionality of the non-mevalonate pathway in cyanobacteria. It was intended to isolate the 1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase gene (dxr), as this gene encodes the enzyme which catalyzes a pathway-specific, indicative step of this pathway. For this purpose, a segment of dxr was amplified from Synechococcus leopoliensis SAUG 1402-1 DNA via PCR using oligonucleotides for conserved regions. Subsequent hybridization screening of a genomic cosmid library of S. leopoliensis with the PCR segment led to the identification of a 26. 5 kbp locus on which a dxr homologous gene and two adjacent open reading frames organized in one operon were localized by DNA sequencing. The functionality of the gene was demonstrated expressing the gene in Escherichia coli and using the purified gene product in a photometrical NADPH dependent test based on the substrate DXP generating system. While the content of one of the central intermediates of the isoprenoid biosynthesis (dimethylallyl diphosphate=DMADP) was significantly (P</=0.001) increased in E. coli cells overexpressing the DXP synthase gene (dxs) of S. leopoliensis, overexpression of dxr does not lead to an elevated DMADP level. Since even in strains harboring an expression fusion of dxs the additional overexpression of dxr does not influence the DMADP content, it is concluded that Dxs but not Dxr catalyzes a rate limiting step of the non-mevalonate isoprenoid biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in Escherichia coli aceE and ribB Genes Allow Survival of Strains Defective in the First Step of the Isoprenoid Biosynthesis Pathway

A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and...

متن کامل

Structure-guided design and biosynthesis of a novel FR-900098 analogue as a potent Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitor.

We report here the enzymatic biosynthesis of FR-900098 analogues and establish an in vivo platform for the biosynthesis of an N-propionyl derivative FR-900098P. FR-900098P is found to be a significantly more potent inhibitor of Plasmodium falciparum 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PfDxr) than the parent compound, and thus a more promising antimalarial drug candidate.

متن کامل

Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis.

Enzymes of the 1-deoxy-D-xylulose 5-phosphate/2-C-methylerythritol 4-phosphate (DOXP/MEP) pathway are targets for new herbicides and antibacterial drugs. Until now, no inhibitors for the DOXP synthase have been known of. We show that one of the breakdown products of the herbicide clomazone affects the DOXP synthase. One inhibitor of the non-mevalonate pathway, fosmidomycin, blocks the DOXP redu...

متن کامل

A Synechococcus leopoliensis SAUG 1402-1 operon harboring the 1-deoxyxylulose 5-phosphate synthase gene and two additional open reading frames is functionally involved in the dimethylallyl diphosphate synthesis.

Experiments have been performed to prove the existence and the functionality of the novel mevalonate independent 1-deoxyxylulose 5-phosphate isoprenoid biosynthesis pathway in cyanobacteria. For this purpose, a segment of the 1-deoxyxylulose 5-phosphate synthase gene (dxs) was amplified from Synechococcus leopoliensis SAUG 1402-1 DNA via PCR using oligonucleotides for conserved regions of dxs. ...

متن کامل

Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs.

A mevalonate-independent pathway of isoprenoid biosynthesis present in Plasmodium falciparum was shown to represent an effective target for chemotherapy of malaria. This pathway includes 1-deoxy-D-xylulose 5-phosphate (DOXP) as a key metabolite. The presence of two genes encoding the enzymes DOXP synthase and DOXP reductoisomerase suggests that isoprenoid biosynthesis in P. falciparum depends o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 481 3  شماره 

صفحات  -

تاریخ انتشار 2000